

Table of Contents

	Welcome

Tutorials

	Getting started

	Generate Images

	More Examples

UE4 Plugin

	Install UnrealCV Plugin

	Basic usage in a new project

	Usage in the Editor

	The configuration file

	Package a game binary

Reference

	The architecture of UnrealCV
	Project Layout

	Command System
	Command cheatsheet

	1. Camera operation

	2. Object interaction

	3. Plugin commands

	4. Action commands

	Run UE4 built-in commands

	Run Blueprint commands

	Model Zoo
	RealisticRendering

	ArchinteriorsVol2Scene1

	ArchinteriorsVol2Scene2

	ArchinteriorsVol2Scene3

	UrbanCity

	Trouble Shooting
	Issues and workarounds

	Supported Unreal Engine Version
	Client Support

	Verified projects

	Known issues and solutions

	Platform specific issues
	Mac

	Linux

	CHANGELOG
	Development branch

	v0.3.0 - Stability improvement

	v0.2.0 - First public release

	Contact
	Team Members

	UE4 Resources
	3D Resources (models, scenes)

	C++ Development

Development

	Development

	Python API

	Contribute

UnrealCV

[image: Join the chat at https://gitter.im/unrealcv/unrealcv] [https://gitter.im/unrealcv/unrealcv?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge]
[image: Docs Status] [http://docs.unrealcv.org]

UnrealCV is a project to help computer vision researchers build virtual worlds using Unreal Engine 4 (UE4). It extends UE4 with a plugin by providing:

	A set of UnrealCV commands to interact with the virtual world.

	Communication between UE4 and an external program, such as Caffe.

UnrealCV can be used in two ways. The first one is using a compiled game binary with UnrealCV embedded. This is as simple as running a game, no knowledge of Unreal Engine is required. The second is installing UnrealCV plugin to Unreal Engine 4 (UE4) and use the editor of UE4 to build a new virtual world.

Please read Tutorial: Getting Started [http://unrealcv.github.io/tutorial/getting_started.html] to learn using UnrealCV.

[image: annotation]
Images generated from the technical demo RealisticRendering

 Getting started

Getting started

This page introduces UnrealCV commands and how to use them to perform basic tasks. We also show how to use a python script to control an UnrealCV embedded game through these commands.

Download a game binary

This tutorial will use a game binary to demonstrate UnrealCV commands. You can also create your own game using UnrealCV plugin.

First you need to download a game binary from our model zoo. For this tutorial, please download RealisticRendering. After unzip and run the binary, you are expected to see a screen like this. The game will be started in a window mode with resolution 640x480, you can change the resolution by changing the configuration file of UnrealCV.

[image: ../_images/rr_init.png]
Fig. 1 Initial screen of the game

Use mouse to look around and use keys w a s d to navigate, use q e to level the camera up and down. If you want to release mouse cursor from the game, press ` (the key on top of tab).

UnrealCV commands

UnrealCV provides a set of commands for computer vision research. These commands are used to perform various tasks, such as control camera and get ground truth. The table below summaries commands used in this tutorial. The complete list can be found in the command list in the reference section.

	Command

	Help

	vset /viewmode [viewmode_name]

	Set ViewMode to (lit, normal, depth, object_mask)

	vget /camera/0/lit

	Save image to disk and return filename

	vset /camera/0/location [x] [y] [z]

	Set camera location

Try UnrealCV commands

Unreal Engine provides a built-in console to help developers to debug games. This built-in console is a convenient way of trying UnrealCV commands. To open the console, press `
(the key on top of tab) twice, a console will pop out, as shown in Fig. 2. Type in vset /viewmode object_mask you are expected to see the object instance mask. Use vset /viewmode lit to switch back to normal rendering setting.

[image: ../_images/console.png]
Fig. 2 Use console to try UnrealCV commands

Use python client to execute commands

If we want to generate a large-scale synthetic dataset, or do active tasks, such as reinforcement learning, in this virtual world. We need to allow an intelligent agent to perceive, navigate and interact in the scene. We provide UnrealCV client to enable other programs to communicate with this virtual world. The client will use a plain-text protocol to exchange information with the game.

Here we use the python client for illustration. If you are looking for a MATLAB client, please see the MATLAB client.

First, we need to install the python client library.

Install UnrealCV python library

pip install unrealcv

Generate some images from the scene

from unrealcv import client
client.connect() # Connect to the game
if not client.isconnected(): # Check if the connection is successfully established
 print 'UnrealCV server is not running. Run the game from http://unrealcv.github.io first.'
else:
 filename = client.request('vget /camera/0/lit')
 filename = client.request('vget /camera/0/depth depth.exr')

You can find this example in examples/10lines.py [https://github.com/unrealcv/unrealcv/blob/master/examples/10lines.py].

If you encountered any errors following this tutorial, please see the diagnosis page to find a solution.

Next: Use UnrealCV in the game mode or plugin mode?

For the game mode, you can use a compiled game binary. You can freely control the camera in this game and generate images and ground truth from it. But it is not easy to change the scene, such as add more objects or change the material properties. If you have access to an UE4 project and know how to use the UE4Editor, you can install the plugin to UE4Editor, so that you can combine the power of UE4Editor and UnrealCV to create new virtual worlds for research.

Tutorials

	How to generate an image dataset

	Integrate with a deep learning framework

	Use the plugin in UE4Editor

	Modify code and add a new command

Articles

	To fully understand how does UnrealCV work and the technical details, please read its architecture or our paper [http://arxiv.org/abs/1609.01326]. For a complete list of available commands, please read the command list in the reference section.

 Generate Images

In [1]:

%matplotlib inline

Generate Images

This ipython notebook demonstrates how to generate an image dataset with
rich ground truth from a virtual environment.

In [2]:

import time; print(time.strftime("The last update of this file: %Y-%m-%d %H:%M:%S", time.gmtime()))

The last update of this file: 2017-10-21 21:26:41

Load some python libraries The dependencies for this tutorials are PIL,
Numpy, Matplotlib

In [3]:

from __future__ import division, absolute_import, print_function
import os, sys, time, re, json
import numpy as np
import matplotlib.pyplot as plt

imread = plt.imread
def imread8(im_file):
 ''' Read image as a 8-bit numpy array '''
 im = np.asarray(Image.open(im_file))
 return im

def read_png(res):
 import StringIO, PIL.Image
 img = PIL.Image.open(StringIO.StringIO(res))
 return np.asarray(img)

def read_npy(res):
 import StringIO
 return np.load(StringIO.StringIO(res))

Connect to the game

Load unrealcv python client, do pip install unrealcv first.

In [4]:

from unrealcv import client
client.connect()
if not client.isconnected():
 print('UnrealCV server is not running. Run the game downloaded from http://unrealcv.github.io first.')
 sys.exit(-1)

INFO:__init__:211:Got connection confirm: 'connected to RealisticRendering'

Make sure the connection works well

In [5]:

res = client.request('vget /unrealcv/status')
The image resolution and port is configured in the config file.
print(res)

Is Listening
Client Connected
9000
Configuration
Config file: /Users/qiuwch/unrealcv/UE4Binaries/RealisticRendering/MacNoEditor/RealisticRendering.app/Contents/UE4/Engine/Binaries/Mac/unrealcv.ini
Port: 9000
Width: 640
Height: 480
FOV: 90.000000
EnableInput: true
EnableRightEye: false

Load a camera trajectory

In [7]:

traj_file = './camera_traj.json' # Relative to this python script
import json; camera_trajectory = json.load(open(traj_file))
We will show how to record a camera trajectory in another tutorial

Render an image

In [8]:

idx = 1
loc, rot = camera_trajectory[idx]
Set position of the first camera
client.request('vset /camera/0/location {x} {y} {z}'.format(**loc))
client.request('vset /camera/0/rotation {pitch} {yaw} {roll}'.format(**rot))

Get image
res = client.request('vget /camera/0/lit lit.png')
print('The image is saved to %s' % res)

It is also possible to get the png directly without saving to a file
res = client.request('vget /camera/0/lit png')
im = read_png(res)
print(im.shape)

Visualize the image we just captured
plt.imshow(im)

The image is saved to /Users/qiuwch/unrealcv/UE4Binaries/RealisticRendering/MacNoEditor/RealisticRendering.app/Contents/UE4/Engine/Binaries/Mac/lit.png
(480, 640, 4)

Out[8]:

<matplotlib.image.AxesImage at 0x108dd8310>

[image: ../_images/tutorials_generate_images_tutorial_12_2.png]

Ground truth generation

Generate ground truth from this virtual scene

In [9]:

res = client.request('vget /camera/0/object_mask png')
object_mask = read_png(res)
res = client.request('vget /camera/0/normal png')
normal = read_png(res)

Visualize the captured ground truth
plt.imshow(object_mask)
plt.figure()
plt.imshow(normal)

Out[9]:

<matplotlib.image.AxesImage at 0x1097db8d0>

[image: ../_images/tutorials_generate_images_tutorial_14_1.png]

[image: ../_images/tutorials_generate_images_tutorial_14_2.png]

Depth is retrieved as a numpy array For UnrealCV < v0.3.8, the depth is
saved as an exr file, but this has two issues. 1. Exr is not well
supported in Linux 2. It depends on OpenCV to read exr file, which is
hard to install

In [10]:

res = client.request('vget /camera/0/depth npy')
depth = read_npy(res)
plt.imshow(depth)

Out[10]:

<matplotlib.image.AxesImage at 0x10905d090>

[image: ../_images/tutorials_generate_images_tutorial_16_1.png]

Get object information

List all the objects of this virtual scene

In [11]:

scene_objects = client.request('vget /objects').split(' ')
print('Number of objects in this scene:', len(scene_objects))

TODO: replace this with a better implementation
class Color(object):
 ''' A utility class to parse color value '''
 regexp = re.compile('\(R=(.*),G=(.*),B=(.*),A=(.*)\)')
 def __init__(self, color_str):
 self.color_str = color_str
 match = self.regexp.match(color_str)
 (self.R, self.G, self.B, self.A) = [int(match.group(i)) for i in range(1,5)]

 def __repr__(self):
 return self.color_str

id2color = {} # Map from object id to the labeling color
for obj_id in scene_objects:
 color = Color(client.request('vget /object/%s/color' % obj_id))
 id2color[obj_id] = color
 # print('%s : %s' % (obj_id, str(color)))

Number of objects in this scene: 296

Parse the segmentation mask

In [12]:

def match_color(object_mask, target_color, tolerance=3):
 match_region = np.ones(object_mask.shape[0:2], dtype=bool)
 for c in range(3): # r,g,b
 min_val = target_color[c] - tolerance
 max_val = target_color[c] + tolerance
 channel_region = (object_mask[:,:,c] >= min_val) & (object_mask[:,:,c] <= max_val)
 match_region &= channel_region

 if match_region.sum() != 0:
 return match_region
 else:
 return None

id2mask = {}
for obj_id in scene_objects:
 color = id2color[obj_id]
 mask = match_color(object_mask, [color.R, color.G, color.B], tolerance = 3)
 if mask is not None:
 id2mask[obj_id] = mask
This may take a while
TODO: Need to find a faster implementation for this

Print statistics of this virtual scene and this image

Load information of this scene

In [14]:

with open('object_category.json') as f:
 id2category = json.load(f)
categories = set(id2category.values())
Show statistics of this frame
image_objects = id2mask.keys()
print('Number of objects in this image:', len(image_objects))
print('%20s : %s' % ('Category name', 'Object name'))
for category in categories:
 objects = [v for v in image_objects if id2category.get(v) == category]
 if len(objects) > 6: # Trim the list if too long
 objects[6:] = ['...']
 if len(objects) != 0:
 print('%20s : %s' % (category, objects))

Number of objects in this image: 125
 Category name : Object name
 Shelving : [u'SM_Shelving_7', u'SM_Shelving_6', u'SM_Shelving_9', u'SM_Shelving_8']
 Bowl : [u'SM_Bowl_29']
 Couch : [u'SM_Couch_1seat_5', u'Couch_13']
 Book : [u'BookLP_139', u'BookLP_153', u'BookLP_134', u'BookLP_135', u'BookLP_136', u'BookLP_137', '...']
 DeskLamp : [u'SM_DeskLamp_5']
 CoatHookBacking : [u'CoatHookBacking_7']
 Plant : [u'SM_Plant_8']
 Door : [u'SM_Door_39']
 Trim_Floor : [u'S_Trim_Floor_10']
 Vase : [u'SM_Vase_22', u'SM_Vase_21', u'SM_Vase_20', u'SM_Vase_18', u'SM_Vase_16', u'SM_Vase_17']
 Carpet : [u'Carpet_5', u'Carpet_7']
 Room : [u'SM_Room_7']
 FloorLamp : [u'SM_FloorLamp_7']
 Switch : [u'Switch_7']
 Frame : [u'SM_Frame_39']
 WallPiece : [u'WallPiece6_32', u'WallPiece2_24', u'WallPiece1_22', u'WallPiece3_26']
 CoatHook : [u'CoatHook_17', u'CoatHook_16']
 RoundCeilingLight : [u'SM_RoundCeilingLight_4']
 CoffeeTable : [u'SM_CoffeeTable_14']

Show the annotation color of some objects

In [15]:

ids = ['SM_Couch_1seat_5', 'SM_Vase_17', 'SM_Shelving_6', 'SM_Plant_8']
for obj_id in ids:
obj_id = ids[0]
color = id2color[obj_id]
print('%s : %s' % (obj_id, str(color)))
color_block = np.zeros((100,100, 3)) + np.array([color.R, color.G, color.B]) / 255.0
plt.figure(); plt.imshow(color_block); plt.title(obj_id)

SM_Couch_1seat_5 : (R=255,G=0,B=255,A=255)

Plot only one object

In [16]:

mask = id2mask['SM_Plant_8']
plt.figure(); plt.imshow(mask)

Out[16]:

<matplotlib.image.AxesImage at 0x10c81eb10>

[image: ../_images/tutorials_generate_images_tutorial_26_1.png]

Show all sofas in this image

In [17]:

couch_instance = [v for v in image_objects if id2category.get(v) == 'Couch']
mask = sum(id2mask[v] for v in couch_instance)
plt.figure(); plt.imshow(mask)

Out[17]:

<matplotlib.image.AxesImage at 0x10c9eb710>

[image: ../_images/tutorials_generate_images_tutorial_28_1.png]

Change the annotation color, fixed in v0.3.9 You can use this to make
objects you don’t care the same color

In [18]:

client.request('vset /object/SM_Couch_1seat_5/color 255 0 0') # Change to pure red
client.request('vget /object/SM_Couch_1seat_5/color')
res = client.request('vget /camera/0/object_mask png')
object_mask = read_png(res)
plt.imshow(object_mask)

Out[18]:

<matplotlib.image.AxesImage at 0x10dc767d0>

[image: ../_images/tutorials_generate_images_tutorial_30_1.png]

Clean up resources

In [19]:

client.disconnect()

 More Examples

More Examples

More examples can be found in the examples folder of the repo [https://github.com/unrealcv/unrealcv/tree/master/examples].

	List of all unrealcv commands - examples/commands_demo.ipynb [https://github.com/unrealcv/unrealcv/blob/develop/examples/commands_demo.ipynb]

	Stereo image pair generation - examples/stereo_pair_generation.ipynb [https://github.com/unrealcv/unrealcv/blob/develop/examples/stereo_pair_generation.ipynb]

	Integration with an AI program

 Install UnrealCV Plugin

Install UnrealCV Plugin

This page briefly describes how to install UnrealCV as a UE4 plugin. Make sure you read getting started before trying to use the plugin.

Use compiled plugin binary

You can download compiled UnrealCV binaries from our github release page [https://github.com/unrealcv/unrealcv/releases]. Then copy the compiled binaries to the plugins folder to install it. Build it yourself by following the Compile from source code. You can install the plugin to either a game project or to UE4 engine.

	
	Install to project

	
	Go to project folder which contains [ProjectName].uproject

	Create a folder called Plugins

	Put UnrealCV folder into the Plugins folder.

	
	Install to Unreal Engine

	
	Go to the plugin folder of Unreal Engine which is Engine/Plugins

	Put UnrealCV folder into the Plugins folder.

Open Menu -> Edit -> Plugins, make sure UnrealCV is installed and enabled. You have to be in play mode before you type the commands.

[image: ../_images/plugin.png]

Install from UE4 marketplace (coming)

For Windows and Mac user, UnrealCV will be released to the UE4 marketplace. We are still finalizing the submission to the UE4 marketplace and it will be available soon.

Compile from source code

If you want to try a version of UnrealCV not provided in our github release page [https://github.com/unrealcv/unrealcv/releases], for example, you want to try some experimental features not released yet. Compiling the plugin code from source code is the only choice.

To compile UnrealCV plugin, use

pip install -U unrealcv
 # Install the latest version of unrealcv, the build.py depends on unrealcv.automation module
python build.py
This script will search common Unreal Engine folders of Windows and Mac
If this script fails to find UE4 installation path, you can also manually specify the engine path
python build.py --UE4 {UE4}
For example
python build.py --UE4 "/Users/Shared/Epic Games/UE_4.16"

After running this command you should see Automation.Execute: BUILD SUCCESSFUL and the plugin binaries will be produced in the Plugins/UnrealCV folder. Then you can copy the compiled plugin to Plugins folder.

If you want to modify UnrealCV code and add new features. Please refer to the development setup. Setting up a dev environment takes a bit more time but will make it much easier to debug and modify code.

Note

When using the plugin in the editor, it is strongly recommend to turn off the setting Editor Preference -> General -> Misc. -> Use Less CPU when in Background.

Special tips for Linux

In Linux, the Unreal Engine needs to be built from source code. How to compile from source code can be found in this official document Building On Linux [https://wiki.unrealengine.com/Building_On_Linux].

Previous versions of unrealcv depends on using OpenEXR module to generate depth, this requirement has been removed.

 Basic usage in a new project

Basic usage in a new project

ue4: 4.14, unrealcv: v0.3.9, level: basic, updated: 06/27/2017

This tutorial assumes the basic knowledge of using a command line. If you are a windows user and do not have much knowledge of using command line and find it difficult to understand, please let us know.

1. Install the plugin (build from source code in this tutorial)

In this tutorial the project and plugin folders are refered as the console varialbe plugin_folder and project_folder

export plugin_folder=$HOME/workspace/unrealcv

Clone the UnrealCV repository
git clone https://github.com/unrealcv/unrealcv ${plugin_folder}

Switch to version `v0.3.10`
cd {plugin_folder}
git checkout v0.3.10

Build the plugin binary
export UE4="/Users/Shared/Epic Games/UE_4.14/"
python build.py --UE4 ${UE4}

More details about the plugin installation can be found in Install UnrealCV Plugin.

2. Create a new project and copy the plugin to the project folder

Creat a ‘Blueprint - First Person’ project.

[image: ../_images/pAbXXXi.png]
Refer the project folder with a project_folder variable

export project_folder="$HOME/Documents/Unreal Projects/MyProject"

Copy the compiled plugin to the project folder to install it.
cp -r "${plugin_folder}"/Plugins/ "${project_folder}"/Plugins/

Restart the UE4 project and make sure the plugin is successfully loaded

3. Open the Unreal project and make sure the plugin is installed

[image: ../_images/hAWJHqt.png]

4. Try the command in UE4Editor

[image: ../_images/AcONETx.png]

5. Try the command is the python console

[image: ../_images/er986gI.png]

 Usage in the Editor

Usage in the Editor

In UE4 editor, you can run UnrealCV command, edit the scene and change the material properties. We show a few examples here using the scene
RealisticRendering [http://docs.unrealcv.org/en/develop/reference/model_zoo.html#realisticrendering].

Run UnrealCV Command

While playing the level in the editor, press ` to open the built-in console and run UnrealCV like in the game binary.

[image: ../_images/command1.png]

Edit Object Specularity

Select an object, e.g. the wooden floor, you want to edit in UE4 editor, and double click the image of Element 0 at Details -> Materials tab to edit its property.

[image: ../_images/editor1.png]
Edit SpecularWood property, e.g. increase the value to make it more specular.

[image: ../_images/material1.png]
The results are as follows,

[image: ../_images/specular.png]

Edit Object Color

Following similar steps, you can edit the color of an object.

[image: ../_images/color1.png]
The results are as follows,

[image: ../_images/color2.png]

Use UnrealCV commands in the editor

[image: ../_images/editor_mask.png]
You can use UnrealCV commands the same way as in a standalone binary.

Reference

This page is contributed by the UnrealStereo [https://arxiv.org/abs/1612.04647] project and the tool and images will be released soon.

 The configuration file

The configuration file

Start from UnrealCV v0.3.1, the config of UnrealCV can be configured in a configuration file. Use vget /unrealcv/status to see current configuration.

Change game resolution

The output resolution of UnrealCV is independent of the window size.

If you want to change the display resolution.
In game mode, use console command r.setres 320x240

When use play -> selected viewport the resolution can not be changed, use play -> new window editor instead.

Change the server port

Use vget /unrealcv/status to get the directory of the configuration file. Then open the configuration file and modify the server port.

 Package a game binary

Package a game binary

In some scenarios you will want to package your game projects into a binary, instead of using it in the editor, for example you want to deploy the game to a deep learning server without UE4 installed or share your game project with other researchers

This page briefly describes how to create a game binary with UnrealCV embedded. Some game binaries can be found in the model zoo

Guide to submit a binary

	Modify UE4 config file

	Package your game project into a binary

	Make a pull request to modify the Model Zoo

	We will review your pull request and merge the changes to the UnrealCV website

1. Modify an UE4 config file

First, you need to add a line to UE4 engine config file Engine\Config\ConsoleVariables.ini by adding this line to the end.

r.ForceDebugViewModes = 1

If this line is missing, UnrealCV commands of the packaged game will not work correctly.

2. Package your game project

UE4 makes it easy to release your project as a game binary. You can use the editor menu to package a game. Many related blog posts can be found online.

	Use UE4 Editor to package a game

	Use script to package a game

python build.py --UE4 {UE4 instal path} {uproject path}

For example, python build.py --UE4 "C:\Program Files\Epic Games\UE_4.16" C:\qiuwch\workspace\uprojects\UE4ArchinteriorsVol2Scene1\ArchinteriorsVol2Scene1.uproject

3. Make a pull request

The last step is making a pull request to modify the model zoo page and add your content. We list some information that should be provided in the pull request. These information can help others better utilize the game binary. This is an example.

	Binary name (required):

	An easy to remember name that people can refer to the binary you created

	Author information (required):

	Author name and contact information

	Binary description (required):

	What this virtual world is designed for? Generating dataset, reinforcement learning, etc.??

	UnrealCV version (required):

	It can be a release version such as v0.3, a git short sha version, or a pointer to a commit of your fork. This information is to help others find which API is available and the corresponding documentation.

	Download link (required):

	Please host binaries in your website, if you have difficulties finding a place to host content, we can help you find some free solutions. Please also include which platform (win,mac,linux) your binaries are built for.

	Related paper or project page (optional):

	If this game binary is related to a research project, make a link to here.

Packaging binaries automatically

In the UnrealCV team, we use a set of packaging scripts to automate the packaging and testing. These scripts are hosted in <qiuwch/unrealcv-packaging>.

 The architecture of UnrealCV

The architecture of UnrealCV

[image: ../_images/pipeline.png]
Fig. 3 Fig.1: Architecture of UnrealCV

The focus of UnrealCV is to do IPC (Inter Process Communication) between a game and a computer vision algorithm. The communication can be summarized by Fig.1. A game created by Unreal Engine 4 will be extended by loading UnrealCV server as its module. When the game launches, UnrealCV will start a TCP server and wait for commands. Any program can use UnrealCV client code to send plain text UnrealCV command to control the scene or retrieve information. The design of UnrealCV makes it cross-platform and support multiple programming languages. The command system is designed in a modular way and can be easily extended.

Unrealcv consists two parts:

	unrealcv server which is embedded into a video game.

	unrealcv client uses commands to control the server.

The initialization procedure of UnrealCV. The module loaded and start a TCP server waiting for connection. Commands will be parsed by regexp.

Project Layout

client/ # Client code for Python and MATLAB
 examples/ # Examples showing how to use client code to do tasks
 matlab/ # MATLAB client
 python/ # Python client
 scripts/ # Scripts for tasks, such as building and packaging
Content/ # Plugin data
docs/ # Documentation of UnrealCV
Resources/ # Plugin resource
Source/ # Plugin C++ source code
test/ # Test code
UnrealCV.uplugin # Descriptor file for an UE4 plugin
README.md

 Command System

Command System

Unreal Engine 4 has some built-in commands to help game development. These commands can be typed into a built-in console. Using these commands, a developer can profile the game performance and view debug information. To invoke the built-in console of a game, type the ` key (the key above tab).

UnrealCV provides commands useful for computer vision researchers. What is more, these commands can be used by an external program. A built-in command can also be used using the special command vrun.

Command cheatsheet

See this ipython notebook [https://github.com/unrealcv/unrealcv/blob/master/examples/commands_demo.ipynb] to see an imcomplete demo of available commands.

1. Camera operation

See Source/UnrealCV/Private/Commands/CameraHandler.h(.cpp) for more details.

	vget /camera/[id]/location

	(v0.2) Get camera location [x, y, z]

	vget /camera/[id]/rotation

	(v0.2) Get camera rotation [pitch, yaw, roll]

	vset /camera/[id]/location [x] [y] [z]

	(v0.2) Set camera location [x, y, z]

	vset /camera/[id]/rotation [pitch] [yaw] [roll]

	(v0.2) Set camera rotation [pitch, yaw, roll]

	vget /camera/[id]/[viewmode]

	(v0.2) Get [viewmode] from the [id] camera, for example: vget /camera/0/depth

	vget /camera/[id]/[viewmode] [filename]

	(v0.2) Same as the above, with an extra parameter for filename

	filename

	Filename is where the file will be stored.

	example

	vget /camera/0/lit lit.png

	vget /camera/[id]/[viewmode] [format]

	(v0.3.7) Support binary data format

	format

	If only file format is specified, the binary data will be returned through socket instead of being saved as a file.

	example

	vget /camera/0/lit png

	vget /camera/[id]/object_mask

	(v0.2) The object mask is captured by first switching the viewmode to object_mask mode, then take a screenshot

	vset /viewmode [viewmode]

	(v0.2) Set ViewMode to (lit, normal, depth, object_mask)

	vget /viewmode

	(v0.2) Get current ViewMode

	vget /camera/[id]/pose

	(v0.3.10) Get camera location [x, y, z] and rotation [pitch, yaw, roll]

	vset /camera/[id]/pose [x] [y] [z] [pitch] [yaw] [roll]

	(v0.3.10) Teleport camera to location [x, y, z] and rotation [pitch, yaw, roll]

	vget /camera/[uint]/horizontal_fieldofview

	(v0.3.10) Get camera horizontal field of view

	vset /camera/[uint]/horizontal_fieldofview [FOV]

	(v0.3.10) Set camera horizontal field of view

	vget /camera/[uint]/vis_depth npy

	(v0.3.10)

	vget /camera/[uint]/plane_depth npy

	(v0.3.10)

2. Object interaction

See Source/UnrealCV/Private/Commands/ObjectHandler.h(.cpp) for more details

	vget /objects

	(v0.2) Get the name of all objects

	vget /object/[obj_name]/color

	(v0.2) Get the labeling color of an object (used in object instance mask)

	vget /object/[obj_name]/location

	Get object location [x, y, z]

	vget /object/[obj_name]/rotation

	Get object rotation [pitch, yaw, roll]

	vset /object/[obj_name]/location [x] [y] [z]

	Set object location [x, y, z]

	vset /object/[obj_name]/rotation [pitch] [yaw] [roll]

	Set object rotation [pitch, yaw, roll]

	vset /object/[obj_name]/color [r] [g] [b]

	(v0.2) Set the labeling color of an object

	vset /object/[str]/show

	(v0.3.10) Show object

	vset /object/[str]/hide

	(v0.3.10) Hide object

3. Plugin commands

See Source/UnrealCV/Private/Commands/PluginHandler.h(.cpp) for more details.

	vget /unrealcv/status

	(v0.2) Get the status of UnrealCV plugin

	vget /unrealcv/help

	(v0.2) List all available commands and their help message

4. Action commands

See Source/UnrealCV/Private/Commands/ActionHandler.h(.cpp)

	vset /action/keyboard [key_name] [delta]

	(v0.3.6) Valid key_name can be found in here [https://wiki.unrealengine.com/List_of_Key/Gamepad_Input_Names]

	vset /action/game/pause

	(v0.3.10) Pause the game

	vset /action/game/level [level_name]

	(v0.3.10) Open a new level

	vset /action/input/enable

	(v0.3.10) Enable input

	vset /action/input/disable

	(v0.3.10) Disable input

	vset /action/eyes_distance [eye_distance]

	(v0.3.10) Set the eye distance between left eye and right eye (camera 1). This command might be marked as deprecated when we finish multiple camera support.

Run UE4 built-in commands

	vrun [cmd]

	(v0.3) This is a special command used to execute Unreal Engine built-in commands. UE4 provides some built-in commands for development and debug. They are not very well documented, but very useful.

A few examples are:

	stat FPS - show current frame rate

	shot - take a screenshot

	show Material - toggle the display of Material

These commands can be executed in the UE4 console. If you want to use them in UnrealCV, you can prefix these commands with vrun stat FPS.

Run Blueprint commands

	vexec [cmd]

	TODO

 Model Zoo

Model Zoo

We provide compiled virtual worlds to play with. All the digital contents belong to the original author. If you want to use UnrealCV plugin in the editor, you can find UE4 projects in UE4 Resources

Hint

Model Zoo is still experimental. If you are a beginner, we highly recommend you start with RealisitcRendering to avoid unknown bugs. If you found any bugs, you can report an issue [https://github.com/unrealcv/unrealcv/issues]. We will fix them as soon as possible.

Run the downloaded binary

	In Mac: Run [ProjectName].app

	In Linux: Run ./[ProjectName]/Binaries/Linux/[ProjectName]

	In Windows: Run [ProjectName]/[ProjectName].exe

Read Package a game binary, if you are interested in sumbitting a binary to the model zoo.

RealisticRendering

	Source

	https://docs.unrealengine.com/latest/INT/Resources/Showcases/RealisticRendering/

	Preview

	

[image: ../_images/realistic_rendering.png]

	Description

	Realistic Rendering is a demo created by Epic Games to show the rendering power of Unreal Engine 4. Here we provide an extended version of this demo with UnrealCV embedded.

	Plugin

	0.3.10

	Download

	Windows [http://cs.jhu.edu/~qiuwch/release/unrealcv/RealisticRendering-Win-0.3.10.zip],
Linux [http://cs.jhu.edu/~qiuwch/release/unrealcv/RealisticRendering-Linux-0.3.10.zip],
Mac [http://cs.jhu.edu/~qiuwch/release/unrealcv/RealisticRendering-Mac-0.3.10.zip]

	Docker

`nvidia-docker run --name rr --rm -p 9000:9000 --env="DISPLAY" --volume="/tmp/.X11-unix:/tmp/.X11-unix:rw" qiuwch/rr:0.3.8`

ArchinteriorsVol2Scene1

	Source

	https://www.unrealengine.com/marketplace/archinteriors-vol-2-scene-01

	Preview

	

[image: ../_images/arch1.png]

	Description

	ArchinteriorsVol2Scene1 is a scene of a 2 floors apartment.

	Plugin

	0.3.10

	Download

	Windows [http://cs.jhu.edu/~qiuwch/release/unrealcv/ArchinteriorsVol2Scene1-Win-0.3.10.zip],
Linux [http://cs.jhu.edu/~qiuwch/release/unrealcv/ArchinteriorsVol2Scene1-Linux-0.3.10.zip],
Mac [http://cs.jhu.edu/~qiuwch/release/unrealcv/ArchinteriorsVol2Scene1-Mac-0.3.10.zip]

ArchinteriorsVol2Scene2

	Source

	https://www.unrealengine.com/marketplace/archinteriors-vol-2-scene-02

	Preview

	

[image: ../_images/arch2.png]

	Description

	ArchinteriorsVol2Scene2 is a scene of a house with 1 bedroom and 1 bathroom.

	Plugin

	0.3.10

	Download

	Windows [http://cs.jhu.edu/~qiuwch/release/unrealcv/ArchinteriorsVol2Scene2-Win-0.3.10.zip],
Linux [http://cs.jhu.edu/~qiuwch/release/unrealcv/ArchinteriorsVol2Scene2-Linux-0.3.10.zip],
Mac [http://cs.jhu.edu/~qiuwch/release/unrealcv/ArchinteriorsVol2Scene2-Mac-0.3.10.zip]

ArchinteriorsVol2Scene3

	Source

	https://www.unrealengine.com/marketplace/archinteriors-vol-2-scene-03

	Preview

	

[image: ../_images/arch3.png]

	Description

	ArchinteriorsVol2Scene3 is a scene of an office.

	Plugin

	0.3.10

	Download

	Windows [http://cs.jhu.edu/~qiuwch/release/unrealcv/ArchinteriorsVol2Scene3-Win-0.3.10.zip],
Linux [http://cs.jhu.edu/~qiuwch/release/unrealcv/ArchinteriorsVol2Scene3-Linux-0.3.10.zip],
Mac [http://cs.jhu.edu/~qiuwch/release/unrealcv/ArchinteriorsVol2Scene3-Mac-0.3.10.zip],

UrbanCity

	Source

	https://www.unrealengine.com/marketplace/urban-city

	Preview

	

[image: ../_images/urbancity.png]

	Description

	UrbanCity is a scene of a block of street.

	Plugin

	0.3.10

	Download

	Windows [http://cs.jhu.edu/~qiuwch/release/unrealcv/UrbanCity-Win-0.3.10.zip],
Linux [http://cs.jhu.edu/~qiuwch/release/unrealcv/UrbanCity-Linux-0.3.10.zip],
Mac [http://cs.jhu.edu/~qiuwch/release/unrealcv/UrbanCity-Mac-0.3.10.zip]

 Trouble Shooting

Trouble Shooting

Issues and workarounds

Issues and workaround can be found in issue tracker [https://github.com/unrealcv/unrealcv/issues]. Please use the search function before posting your issue, your problem might have already been answered.

If the plugin crashed the editor, please send us your crash log to help us figure out what is going wrong. The crash log can be found in Saved/CrashReport. If you can not find the crash report, you can also send us the core dump file.

Supported Unreal Engine Version

	
	4.12

	4.14

	4.16

	Windows

	
	
	

	Linux

	
	
	

	Mac

	
	
	

Client Support

Python support for python 2 and 3 are verified with tox.

Verified projects

Unreal Engine projects are of dramatic different scales and complexity. It can be as simple as just a single room, or be a large city or outdoor scene. UnrealCV is far from perfect and it has compatible issues with some Unreal projects. Here are a few projects we are currently using and have verified that UnrealCV can work well with. If you want us to test a map (project), please let us know.

Here are a list of Unreal projects that we tried and verified.

	Playground, tested by @qiuwch [https://github.com/qiuwch]

	Realistic Rendering, tested by @qiuwch [https://github.com/qiuwch]

	CityScene, tested by @qiuwch [https://github.com/qiuwch] @edz-o [https://github.com/edz-o]

	SunTemple, tested by @edz-o [https://github.com/edz-o]

Known issues and solutions

We tried our best to make the software stable and easy to use, but accidents sometimes happen. Here are a list of issues that you might find. Use the search function ctrl+f to search your error message. If you can not find useful information here, post a new issue. Subscribe to an issue if you want to get future notification.

	python3 support. See issue #49 [https://github.com/unrealcv/unrealcv/issues/49], Thanks to @jskinn [https://github.com/jskinn] for the idea!

	The screen resolution is not what I want

	In editor, change Editor preference -> Level Editor -> Play

	In the game mode, use console command setres 640x480

	Change the config file shown in vget /unrealcv/status

	The speed of UnrealCV

	The OpenEXR requirement

	The Unreal Engine config file not changed

	The image and ground truth not aligned

	Can not connect to the binary

Use vget /unrealcv/status to make sure the server is listening and no client is connected.

Platform specific issues

Mac

When in mac, the server can not detect the socket disconnection. If the first time connection is successful and the second time is faile. Then please close and re-open it again.

Native error= Cannot find the specified file

https://answers.unrealengine.com/questions/574562/cannot-package-a-plugin-in-415mac.html

Invalid SDK MacOSX.sdk, not found in /Library/Developer/CommandLineTools/Platforms/MacOSX.platform/Developer/SDKs

https://answers.unrealengine.com/questions/316117/missing-project-modules-1.html
https://github.com/nodejs/node-gyp/issues/569#issuecomment-255589932

Linux

	The binary can not run

For example an error like this.

[2017.05.25-04.14.33:476][0]LogLinux:Error: appError called: Assertion failed: Assertion failed: [File:/UE4/Engine/Source/Runtime/OpenGLDrv/Private/Linux/OpenGLLinux.cpp] [Line: 842]

Unable to dynamically load libGL: Could not retrieve EGL extension function eglQueryDevicesEXT

It is very likely an issue with the OpenGL of the system.

sudo apt-get install mesa-utils and run glxgears. Make sure you can see a window with gears running in it.

 CHANGELOG

CHANGELOG

Development branch

	
	v0.3.10

	
	
	Commands contributed in pull request #91 [https://github.com/unrealcv/unrealcv/issues/91], authored by @bennihepp [https://github.com/bennihepp]

	
	Add vget /camera/[id]/pose, vset /camera/[id]/pose

	Add vget/vset /camera/[id]/horizontal_fieldofview

	Add vget /camera/[id]/vis_depth npy and vget /camera/[id]/plane_depth npy

	Add vset /object/[id]/show, vset /object/[id]/hide

	Add vset /action/input/enable, vset /action/input/disable

	
	Add more commands

	
	Add vget /object/[id]/mobility, vget /object/[id]/location, vget /object/[id]/rotation

	Add vget /camera/[id]/normal npy

	Add vset /action/eyes_distance [eye_distance]

	Add vset /action/game/pause

	Update the python client to support python3

	Improve documentation

	
	v0.3.9

	
	Fix a bug that prevents object mask generation, which is introduced in v0.3.7

	Fix #53 that the painting of object does not work

	Fix #49 python3 support, thanks to @jskinn and @befelix

	
	v0.3.8 :

	
	Integrate cnpy into unrealcv

	Add vget /camera/depth npy, which can return tensor as a numpy binary.

	
	v0.3.7 :

	
	Add vget /camera/lit png to retrieve binary data without saving it.

	
	v0.3.6 :

	
	Change docs from markdown to reStructuredText

	Add docker to automate tests

	Add vset /action/keyboard [key_name] [delta]

	v0.3.5 : Add vexec to support the invocation of blueprint functions, Add GetWorld() in FCommandHandler.

	v0.3.4 : Delay the object mask painting from initialization code

	v0.3.3 : Add vget /scene/name

	
	v0.3.2 :

	
	Add vget /unrealcv/version

	Add vset /action/eyes_distance

	Fix vget /camera/[id]/location to support multiple cameras

	Update test code

	v0.3.1 : Fix GWorld issue

v0.3.0 - Stability improvement

	Add support for Unreal 4.13, 4.14

	Stability improvement, fix crash caused by the usage of GWorld

	Fix some incorrect ground truth, blueprint actor not correctly displayed.

	Add playground project

	Add docs to docs.unrealcv.org

	Add API documentation created by doxygen

	Fix an issue that prevents the packaging of games.

	Add vrun command to exec UE4 built-in command

API update:

	vrun [built-in command]

	vset /camera/[id]/moveto [x] [y] [z] # With collision enabled

v0.2.0 - First public release

Features

	Add communication to UE4Editor and a compiled game

	Add Python and MATLAB client to communicate with UnrealCV server

	Add ground truth extraction, include: depth, object-mask, surface normal

	Add support for Linux, Win and Mac

Initial API, see more details in the command list

	vget /objects

	vget /object/[obj_name]/color

	vset /object/[obj_name]/color [r] [g] [b]

	vget /camera/[id]/location

	vget /camera/[id]/rotation

	vset /camera/[id]/location [x] [y] [z]

	vset /camera/[id]/rotation [pitch] [yaw] [roll]

	vget /camera/[id]/[viewmode]

	vget /camera/[id]/[viewmode] [filename]

	vset /viewmode [viewmode]

	vget /viewmode

	vget /unrealcv/status

	vget /unrealcv/help

The upcoming release will follow the concept of Semantic Versioning [http://semver.org/]

 Contact

Contact

UnrealCV is an open source project created by Weichao Qiu [http://weichaoqiu.com]. It is hosted in Github [https://github.com/unrealcv/unrealcv] and everyone is welcomed to contribute.

	If you want a new feature for your research or found any bug, please submit an issue in the issue tracker [https://github.com/unrealcv/unrealcv/issues].

	Want to provide a compiled binary for the community? Please read the guidance in Model Zoo.

	Want to learn how to create a game using Unreal Engine 4? Please check the UE4 official documentation [https://docs.unrealengine.com/latest/INT/].

Team Members

UnrealCV is developed and maintained by a group of students working on computer vision. The list of all contributors can be found here [https://github.com/unrealcv/unrealcv/graphs/contributors].

Here is a brief introduction of team members. If you want to be added to here, click the Edit on Github button on the top-right of this page.

	Weichao Qiu [http://weichaoqiu.com]: Constructing virtual worlds to train and diagnose computer vision algorithms

	Fangwei Zhong: Reinforce learning in virtual environments

	Siyuan Qiao [http://www.cs.jhu.edu/~syqiao/]: Stochastic virtual scene generation

	Tae Soo Kim: Deep learning for transferable concepts between the real and the virtual environment

	Yi Zhang: Algorithm diagnosis with synthetic data

	Zihao Xiao

 UE4 Resources

UE4 Resources

If you are interested in using synthetic data in your research projects, please see the synthetic-computer-vision repository for some related works.

UE4 is a good choice for research for various reasons:

	Rich 3D resources

	Open source [https://www.unrealengine.com/en-US/ue4-on-github]

	Cross-platform

	Physically based material system

Here we collect some resources to help you use UE4 and UnrealCV in your research.

3D Resources (models, scenes)

	Unreal Marketplace [https://www.unrealengine.com/marketplace] - The official marketplace of Unreal Engine

	The architectural visualization section [https://www.unrealengine.com/marketplace/content-cat/assets/archvis]

	Unreal Engine feature examples [https://docs.unrealengine.com/latest/INT/Resources/Showcases/index.html]

	UE4Arch [https://ue4arch.com] - High quality architectural visualization using UE4.

	Evermotion [https://evermotion.org/shop]

	TurboSquid [https://www.turbosquid.com/] - High quality 3D models used in the industry

	ShapeNet [https://www.shapenet.org/] - Free 3D models released by the research community

C++ Development

	UE4 API [https://docs.unrealengine.com/latest/INT/API/]

	UE4 Answerhub [https://answers.unrealengine.com/]

	UE4 Github Repository [https://github.com/EpicGames/UnrealEngine] (This is a private repository, you need to register here [https://www.unrealengine.com/ue4-on-github] before you can access it).

 Development

Development

UnrealCV can be compiled as a plugin as shown in the Compile from source code, but it you want to modify the plugin source code, compiling it together with an UE4 C++ project will make debug much easier.
For development, we need to

	Create a C++ game project

	Get the corresponding plugin

	Compile the C++ project

	Add a new command

Create a C++ game project

UE4 has two types of game projects. Blueprint project and C++ project. We need a C++ project.

In a C++ project, the plugin code will be compiled together with the game project.

The simplest way to start is using the playground project [https://github.com/unrealcv/playground]. Playground project is a simple UE4 project to show basic features of UE4 and UnrealCV. It serves as a development base and test platform for UnrealCV team.

We use git-lfs to manage large binary files. Please make sure you have installed git-lfs on your computer. Then you can get the playground project by

git lfs clone https://github.com/unrealcv/playground.git

Get the corresponding plugin

Now the folder Plugins/UnrealCV in the repository is empty. Please refer to Install UnrealCV Plugin to get the corresponding plugin and put it in the folder.

Compile the C++ project

Windows

	Install visual studio.

	To generate visual studio solution, right click playground.uproject and choose Generate Visual Studio project files.

	Open the *.sln solution file and build the solution. The plugin code will be compiled together with the game project.

Linux

	Compile UE4 from source code following this official instruction [https://wiki.unrealengine.com/Building_On_Linux]

	Put this to your .bashrc or .zshrc

Modify to a path that specified in step 1
export UE4=/home/qiuwch/UnrealEngine/4.13
UE4Editor() { bin=${UE4}/Engine/Binaries/Linux/UE4Editor; file=`pwd`/$1; $bin $file; }
UE4GenerateProjectFiles() {
 bin=${UE4}/GenerateProjectFiles.sh; file=`pwd`/$1;
 $bin -project=${file} -game -engine;
}

	Generate project file and use Makefile

UE4GenerateProjectFiles playground.uproject
make playgroundEditor
or make playgroundEditor-Linux-Debug
UE4Editor playground.uproject

Mac

	Install Xcode.

	To generate Xcode Project, right click playground.uproject and choose Service->Generate Xcode Project.

	Open the *.xcworkspace file and build. The plugin code will be compiled together with the game project.

Useful resources for development, UnrealCV architecture

Add a new command

UnrealCV provides a set of commands for accomplishing tasks and the list is growing. But it might not be sufficient for your task. If you need any function that is missing, you can try to implement it yourself.

The benefits of implementing an UnrealCV command are:

	You can use the communication protocol provided by UnrealCV to exchange data between your program and UE4.

	You can share your code with other researchers, so that it can be used by others.

Note

You are supposed to edit your code in playground->Plugins->UnrealCV instead of UE4->Plugins->UnrealCV.

First we go through a very simple example which prints a message. Assume that we want to add a commamd vget /object/helloworld to print “Hello World!”. We need to modify two files: ObjectHandler.h and ObjectHandler.cpp.

In ObjectHandler.h, we need to add a member function:

FExecStatus HelloWorld(const TArray<FString>& Args);

In ObjectHandler.cpp, we define this member function:

FExecStatus FObjectCommandHandler::HelloWorld(const TArray<FString>& Args)
{
 FString Msg;
 Msg += "Hello World!";
 return FExecStatus::OK(Msg);
}

Then we need to bind the command with the function:

void FObjectCommandHandler::RegisterCommands()
{
 ...

 Cmd = FDispatcherDelegate::CreateRaw(this, &FObjectCommandHandler::HelloWorld);
 Help = "Print Hello World";
 CommandDispatcher->BindCommand(TEXT("vget /object/helloworld"), Cmd, Help);

 ...
}

After the modification, we can compile and use the new command.

Here we will walk you through how to implement a command vset /object/[id]/rotation to enable you set the rotation of an object.

FExecStatus return the exec result of this command. The result will be returned as a text string.

Available variables for a command are GetWorld(), GetActor(), , GetLevel().

A new function will be implemented in a CommandHandler. CommandDispatcher will use CommandHandler.

 Python API

Python API

Some useful utility functions for reading data

The unrealcv.automation module to help building the plugin, packaging model zoo binaries, etc.

 Contribute

Contribute

We will be grateful if you help us mature UnrealCV.

Bug Reporting

If you find a bug in UnrealCV, you can search for similar issues in the Github first. If you still cannot solve the problem, please open an issue and describe the bug you encountered.

Requesting A New Feature

UnrealCV is still developing and we really want to make it more helpful to computer vision researchers. Please tell us your expectation about what can be done with UnrealCV. You are welcomed to open an issue and tell us what you want.

Pull Request

If you make improvements to UnrealCV,like fixing a bug or adding a new feature, please submit a pull request. Please make sure that you follow the syntax of UnrealCV. You will be greatly appreciated if you can fully describe the changes you have made.

 Index

Index

 Welcome

Welcome

UnrealCV helps computer vision researchers build virtual worlds using Unreal Engine 4 (UE4). It extends UE4 with a plugin by providing:

	a set of UnrealCV commands to interact with the virtual world

	Communication between UE4 and an external program, such as Caffe or tensorflow.

[image: _images/homepage_teaser.png]
Images generated from the technical demo RealisticRendering

Currently, UnrealCV plugin supports UE4 (4.12, 4.13, 4.14) in Windows, Linux and Mac, more details about supported platforms in this page. UnrealCV client supports python and MATLAB (experimental). Read getting started to learn how to use UnrealCV.

Tutorials are provided to help you get familiar with UnrealCV quickly and more technical details are documented in the reference section.

Tutorials

	Getting started - The basics of using UnrealCV, start from here.

	Generate Images - Generate an image dataset with ground truth.

	Integration with an AI program - Show how to use images from a video game for testing faster RCNN.

	Install UnrealCV Plugin - How to install UnrealCV plugin into UE4.

Reference

	The architecture of UnrealCV - Technical details of UnrealCV.

	Command System - All available commands provided in UnrealCV.

For the doc of a specific version of unrealcv, please see the version page [https://readthedocs.org/projects/unrealcv/versions/]

 Integration with an AI program

Integration with an AI program

This is a video showing connecting Faster-RCNN with a video game for diagnosis.

 <no title>

This is the API documentation of UnrealCV.

If you want to implement a new command, please start from @ref FUE4CVServer

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_images/AcONETx.png
¥ & EQ 8 S5.85.1me

Save Current Source Control Content Marketplace Settings Blueprints Cinematics Build Pause Stop Eject

>>> vget fobjects <<<
SkySphereBlueprint EditorCube8_2 EditorCube9_3 EditorCube10_4 EditorCube11_5 EditorCube12_6 EditorCube13_7 EditorCube14_8 EditorCube15_9 EditorCube16_10 EditorCube17_11 Edi

_static/minus.png

_static/down.png

_images/arch3.png

_images/color1.png
r z
"L,

T [o -

4 Parameter Groups

Bt cior_ mumcmmamomn 5
A @steconr MM —-
. C— -
.
. ——§
. [

Base Rouginess

Totures

_images/arch1.png

_static/plus.png

_images/arch2.png

_images/color2.png

_images/command1.png
il

SoveCuren_soce ool

nm,

Pase_sup

[R

eumnl Watkelace | setings

5 -

u\urpnnu Cinemates

&3

Buld comple

_images/console.png
© © RealisticRendering (64-bit, GLSL_150) © © RealisticRendering (64-bit, GLSL_150)

\
R
|

mfl"l

vet|

vset /viewmode object_ma

nav.xhtml

 Table of Contents

 		
 Table of Contents

 		
 Welcome

 		
 Getting started

 		
 Generate Images

 		
 More Examples

 		
 Install UnrealCV Plugin

 		
 Basic usage in a new project

 		
 Usage in the Editor

 		
 The configuration file

 		
 Package a game binary

 		
 The architecture of UnrealCV

 		
 Project Layout

 		
 Command System

 		
 Command cheatsheet

 		
 1. Camera operation

 		
 2. Object interaction

 		
 3. Plugin commands

 		
 4. Action commands

 		
 Run UE4 built-in commands

 		
 Run Blueprint commands

 		
 Model Zoo

 		
 RealisticRendering

 		
 ArchinteriorsVol2Scene1

 		
 ArchinteriorsVol2Scene2

 		
 ArchinteriorsVol2Scene3

 		
 UrbanCity

 		
 Trouble Shooting

 		
 Issues and workarounds

 		
 Supported Unreal Engine Version

 		
 Client Support

 		
 Verified projects

 		
 Known issues and solutions

 		
 Platform specific issues

 		
 Mac

 		
 Linux

 		
 CHANGELOG

 		
 Development branch

 		
 v0.3.0 - Stability improvement

 		
 v0.2.0 - First public release

 		
 Contact

 		
 Team Members

 		
 UE4 Resources

 		
 3D Resources (models, scenes)

 		
 C++ Development

 		
 Development

 		
 Python API

 		
 Contribute

_static/up.png

_images/er986gI.png
= MyProject python -c "from unrealcv import client; client.connect(); print(client.request('vget /objects'))"
INFO:__init__:204:Got connection confirm: 'connected to MyProject'

SkySphereBlueprint EditorCube8_2 EditorCube9_3 EditorCubel@d_4 EditorCubell 5 EditorCubel2_6 EditorCubel3_7 EditorCu
_16 Walll_17 !0112_18 Wall3_19 Wall4_20 BigWall_21 BigWall2_22 256 CameraActor_@

_images/hAWJHqt.png
o Hlilejini

@ Installed) [> s > science e O

Unreal CV i\ BETA Version 0.3.9
, UnrealCV is a plugin to connect computer vision algorithm and the games built by Unreal Engine

4 @ Built-In
= 2D
*I= Advertising ——

*I= Analytics

"= Audio

*i= Blueprints

*i= Device Profile Selectors (:

"i= Editor

*i= Examples

*I= Gameplay

"= Importers

"= Input Devices

"= Localization

*I= Media Players

'I= Messaging

"= Misc

*I= Mobile

"= Mavia Cantira

$layr olugin

_images/editor1.png

_images/editor_mask.png
L'
Fie e wodow telp
vt B

EEETT N »

‘::mryvuet -

e -

36180 @ view Optns

v | B
—
T

Acisaes

_images/pAbXXXi.png
